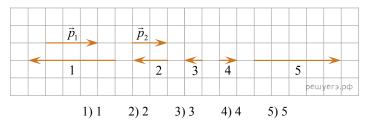
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида $(1,4\pm0,2)$ Н записывайте следующим образом: 1,40,2.

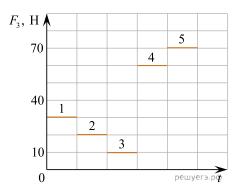
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. Среди перечисленных ниже физических величин скалярная величина указана в строке:

1) импульс 2) сила 3) скорость 4) ускорение 5) масса


2. Звуковой сигнал, посланный эхолокатором в момент времени $t_1 = 0$ с, отразился от препятствия, возвратился обратно в момент времени $t_2 = 2,66$ с. Если модуль скорости распространения звука в воздухе $\upsilon = 340$ м/с, то расстояние L от локатора до препятствия равно:

1) 100 m 2) 224 m 3) 452 m 4) 581 m 5) 649 m

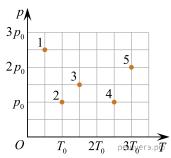

3. Материальная точка равномерно движется по окружности радиусом R=50 см. Если в течение промежутка времени $\Delta t=25$ с материальная точка совершает N=40 оборотов, то модуль её скорости υ равен:

1) 5 m/c 2) 8 m/c 3) 10 m/c 4) 12 m/c 5) 15 m/c

4. В начальный момент времени импульс частицы был равен \vec{p}_1 . Через некоторое время импульс частицы стал равен \vec{p}_2 (см. рис.). Изменение импульса частицы $\Delta \vec{p}$ — это вектор, обозначенный цифрой:

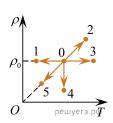
5. Тело двигалось в пространстве под действием трёх постоянных по направлению сил \vec{F}_1 , \vec{F}_2 , \vec{F}_3 . Модуль первой силы F_1 = 15 H, второй — F_2 = 40 H. Модуль третьей силы F_3 на разных участках пути изменялся со временем так, как показано на графике. Если известно, что только на одном участке тело двигалось равномерно, то на графике этот участок обозначен цифрой:

1) 1 2) 2 3) 3 4) 4 5) 5


6. Шар объемом V = 16.0 дм³, имеющий внутреннюю полость объёмом $V_0 = 15.0 \text{ дм}^3$, плавает в воде ($\rho_1 = 1.0 \cdot 10^3 \text{ кг/м}^3$), погрузившись в нее ровно наполовину. Если массой воздуха в полости шара пренебречь, то плотность ρ_2 вещества, из которого изготовлен шар, равна:

Примечание. Объём V шара равен сумме объёма полости V_0 и объёма вещества, из которого изготовлен шар.

1)
$$2.5 \cdot 10^3 \text{ kg/m}^3$$
 2) $4.0 \cdot 10^3 \text{ kg/m}^3$ 3) $5.5 \cdot 10^3 \text{ kg/m}^3$ 4) $6.0 \cdot 10^3 \text{ kg/m}^3$ 5) $8.0 \cdot 10^3 \text{ kg/m}^3$


7. На p-T диаграмме изображены различные состояния идеального газа. Состояние с наименьшей концентрацией n_{\min} молекул газа обозначено цифрой:

8. Если в объёме V=1,0 дм³ некоторого вещества (M=56 г/моль) содержится $N=8,4\cdot 10^{25}$ молекул, то плотность р этого вещества равна:

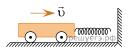
1) 1,0
$$\Gamma/\text{cm}^3$$
 2) 2,7 Γ/cm^3 3) 5,6 Γ/cm^3 4) 7,8 Γ/cm^3 5) 8,7 Γ/cm^3

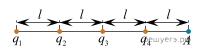
9. На рисунке изображена зависимость плотности ρ молекул от температуры Tдля пяти процессов с идеальным газом, масса которого постоянна. Давление газа р изохорно уменьшалось в процессе:

1)
$$0-1$$
 2) $0-2$ 3) $0-3$ 4) $0-4$ 5) $0-5$

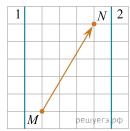
10. Если в результате трения о шерсть эбонитовая палочка приобрела отрицательный заряд q = -8 HK_{J} , то общая масса m электронов, перешедших на эбонитовую палочку равна:

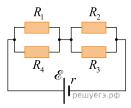
$$1)\ 9,1\cdot 10^{-17}\ \Gamma \qquad 2)\ 8,8\cdot 10^{-17}\ \Gamma \qquad 3)\ 7,6\cdot 10^{-17}\ \Gamma \qquad 4)\ 6,4\cdot 10^{-17}\ \Gamma \qquad 5)\ 4,6\cdot 10^{-17}\ \Gamma$$


- 11. Лифт начал подниматься с ускорением, модуль которого a = 1,2 м/с². В некоторый момент с потолка кабины лифта оторвался болт. Если высота кабины h = 2,4 м, а болт переместился относительно поверхности Земли за время его движения в лифте вертикально вверх на $\Delta r = 80$ см, то модуль скорости V движения лифта в момент отрыва болта равен ... дм/с.
- 12. Два груза, находящиеся на гладкой горизонтальной поверхности, связаны легкой нерастяжимой нитью (см. рис.). Грузы приходят F_2 в движение под действием сил, модули которых зависят от времени по закону: $F_1 = At$ и $F_2 = 2At$, где A = 1,60 H/c. Нить разрывается в мо-

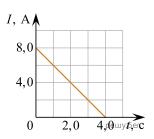

мент времени t = 10,0 с от начала движения, и модуль сил упругости нити в момент разрыва $F_{\rm упр} =$ 25,0 Н. Если масса первого груза $m_1 = 900$ г, то масса m_2 второго груза равна... г.

13. На дне вертикального цилиндрического сосуда, радиус основания которого R = 12 см, неплотно прилегая ко дну, лежит кубик. Длина стороны кубика a = 9 см. Если минимальный объем воды ($\rho_{\rm B}$ = 1,00 г/см³), которую нужно налить в сосуд, чтобы кубик начал плавать, V_{\min} = 550 см³, то масса mкубика равна ... г.


14. К тележке массой m = 0.36 кг прикреплена невесомая пружина жёсткостью k = 400 H/м. Тележка, двигаясь без трения по горизонтальной плоскости, сталкивается с вертикальной стеной (см. рис.). От момента соприкосновения пружины со стеной до момента остановки тележки пройдёт промежуток времени Δt , равный ... мс.


- **15.** В закрытом сосуде вместимостью $V = 1{,}00 \text{ см}^3$ находится $N = 3{,}80 \cdot 10^{20}$ молекул идеального газа при давлении p=536 кПа. Если молярная масса газа $M=32,0\frac{\Gamma}{\text{МОЛЬ}}$, то средняя квадратичная скорость $\langle v_{\text{\tiny KB}} \rangle$ поступательного движения молекул этого газа равна... $\frac{\text{M}}{c}$. (Число Авогадро — $6.02 \cdot 10^{23} \text{ моль}^{-1}$.)
- 16. Два одинаковых одноименно заряженных металлических шарика находятся в вакууме на расстоянии r = 12 см друг от друга. Шарики привели в соприкосновение, а затем развели на прежнее расстояние. Если модуль заряда второго шарика до соприкосновения $|q_2| = 2$ нКл, а модуль сил электростатического взаимодействия шариков после соприкосновения F = 10 мкH, то модуль заряда $|q_1|$ первого шарика до соприкосновения равен ... нКл.
- 17. Цилиндрический сосуд с идеальным одноатомным газом, закрытый невесомым легкоподвижным поршнем с площадью поперечного сечения $S = 240 \text{ см}^2$, находится в воздухе, давление которого $p_0 = 100$ кПа. Если при медленном нагревании газа поршень сместился на расстояние l = 70,0 мм, то газу сообщили количество теплоты Q, равное ... Дж.
- **18.** Четыре точечных заряда $q_1 = 9,6$ нКл, $q_2 = -1,8$ нКл, $q_3 = 1,6$ нКл, $q_4 = -5,6$ нКл расположены в вакууме на одной прямой $q_1 = q_2 = q_3 = q_4$ нуегэ.рА (см. рис.). Если в точке A, находящейся на этой прямой на расстоянии l от заряда q_4 , модуль напряженности электростатического поля системы зарядов E = 48 кB/м, то расстояние l равно ... **мм**.

19. На рисунке изображён участок плоского конденсатора с обкладками 1 и 2, которые перпендикулярны плоскости рисунка. Если при перемещении точечного положительного заряда q = 10 нКл из точки M в точку N электрическое поле конденсатора совершило работу A = 240 нДж, то разность потенциалов $\phi_1 - \phi_2$ между обкладками равна ... В.



20. Участок цепи, состоящий из четырех резисторов (см. рис.), сопротивления которых $R_1 = 1,0$ Ом, $R_2 = 2,0$ Ом, $R_3 = 3,0$ Ом и $R_4 = 4,0$ Ом, подключен к источнику тока с ЭДС $\varepsilon = 20,0$ В и внутренним сопротивлением r = 2,0 Ом. Тепловая мощность P_3 , выделяемая в резисторе R_3 , равна ... **Вт**.

21. Короткий световой импульс, испущенный лазерным дальномером, отразился от объекта и был зарегистрирован этим же дальномером через промежуток времени $\Delta t = 0.50$ мкс после испускания. Расстояние s от дальномера до объекта равно ... **м**.

- **22.** Радар, установленный на самолёте, излучил вперёд по движению в сторону неподвижного аэростата два коротких электромагнитных импульса, следующих друг за другом через промежуток времени $\tau=20\,$ мс.. Эти импульсы отразились от аэростата и были приняты радаром. Если модуль скорости, с которой самолёт приближается к аэростату, $\upsilon=210\frac{\rm M}{\rm c}$, то промежуток времени между моментами излучения и приёма первого импульса больше, чем промежуток времени между моментами излучения и приёма второго импульса, на величину Δt , равную ... нс.
- **23.** Маленький заряженный шарик массой m=4,0 мг подвешен в воздухе на тонкой непроводящей нити. Под этим шариком на вертикали, проходящей через его центр, поместили второй маленький шарик, имеющий такой же заряд $(q_1=q_2)$, после чего положение первого шарика не изменилось, а сила натяжения нити стала равной нулю. Если расстояние между шариками r=30 см, то модуль заряда каждого шарика равен ... нКл.
- **24.** Для исследования лимфотока пациенту ввели препарат, содержащий $N_0=120~000$ ядер радиоактивного изотопа золота $^{133}_{54}$ Xe. Если период полураспада этого изотопа $T_{\frac{1}{2}}=5,5~{
 m cyt.},~{
 m to}$ $\Delta N=90000$ ядер $^{133}_{54}$ Xe распадётся за промежуток времени Δt , равный ... cyt.
- **25.** Если за время $\Delta t = 30$ суток показания счётчика электроэнергии в квартире увеличились на $\Delta W = 31.7~{\rm kBr} \cdot {\rm ч}$, то средняя мощность P, потребляемая электроприборами в квартире, равна ... Вт.
- **26.** Электрическая цепь состоит из источника тока, внутреннее сопротивление которого r=0,50 Ом, и резистора сопротивлением R=10 Ом. Если сила тока в цепи I=2,0 А, то ЭДС $\mathcal E$ источника тока равна ... В.
- **27.** Электроскутер массой m=130 кг (вместе с водителем) поднимается по дороге с углом наклона к горизонту $\alpha=30^\circ$ с постоянной скоростью $\vec{\upsilon}$. Сила сопротивления движению электроскутера прямо пропорциональна его скорости: $\vec{F}_c=-\beta\vec{\upsilon}$, где $\beta=1,25$ $\frac{\text{H}\cdot\text{c}}{\text{M}}$. Напряжение на двигателе электроскутера U=480 В, сила тока в обмотке двигателя I=40 А. Если коэффициент полезного действия двигателя $\eta=85\%$, то модуль скорости υ движения электроскутера равен ... $\frac{\text{M}}{c}$.
- **28.** На рисунке представлен график зависимости силы тока I в катушке индуктивностью L=7.0 Гн от времени t. ЭДС $\mathcal{E}_{\mathbf{c}}$ самоиндукции, возникающая в этой катушке, равна ... В.

29. Идеальный колебательный контур состоит из конденсатора электроёмкостью C=150 мкФ и катушки индуктивностью L=1,03 Гн. В начальный момент времени ключ K разомкнут, а конденсатор заряжен (см. рис.). После замыкания ключа заряд конденсатора уменьшится в два раза через минимальный промежуток времени Δt , равный ... мс.

30. Луч света, падающий на тонкую рассеивающую линзу с фокусным расстоянием |F|=30 см, пересекает главную оптическую ось линзы под углом α , а продолжение преломлённого луча пересекает эту ось под углом β . Если отношение $\frac{\mathrm{tg}\,\beta}{\mathrm{tg}\,\alpha}=\frac{5}{2}$, то точка пересечения продолжения преломлённого луча с главной оптической осью находится на расстоянии f от оптического центра линзы, равном ... см.